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Abstract 

Speech comprehension depends on the integrity of both the spectral content and temporal 

envelope of the speech signal. Although neural processing underlying spectral analysis has 

been intensively studied, less is known about the processing of temporal information. Most of 

speech information conveyed by the temporal envelope is confined to frequencies below 16 

Hz, frequencies that roughly match spontaneous and evoked modulation rates of primary 

auditory cortex neurons. To test the importance of cortical modulation rates for speech 

processing, we manipulated the frequency of the temporal envelope of speech sentences and 

tested the effect on both speech comprehension and cortical activity. 

Magnetoencephalographic signals from the auditory cortices of human subjects were 

recorded while they were performing a speech comprehension task. The test sentences used 

in this task were compressed in time. Speech comprehension was degraded when sentence 

stimuli were presented in more rapid (more compressed) forms. We found that the average 

comprehension level, at each compression, correlated with (i) the similarity between the 

frequencies of the temporal envelopes of the stimulus and the subject's cortical activity 

(“stimulus-cortex frequency-matching”) and (ii) the phase-locking (PL) between the two 

temporal envelopes (“stimulus-cortex PL”). Of these two correlates, PL was significantly 



more indicative for single-trial success. Our results suggest that the match between the speech 

rate and the a priori modulation capacities of the auditory cortex is a prerequisite for 

comprehension. However, this is not sufficient: stimulus-cortex PL should be achieved 

during actual sentence presentation.  

• human‖MEG‖time compression‖accelerated speech‖phase-locking 

Comprehension of speech depends on the integrity of its temporal envelope, that is, on the 

temporal variations of spectral energy. The temporal envelope contains information that is 

essential for the identification of phonemes, syllables, words, and sentences (1). Envelope 

frequencies of normal speech are usually below 8 Hz (ref. 2; see Figs. 1 and 2). The critical 

frequency band of the temporal envelope for normal speech comprehension is between 4 and 

16 Hz (3, 4); envelope details above 16 Hz have only a small [although significant (5)] effect 

on comprehension. Across this low-frequency modulation range, comprehension does not 

usually depend on the exact frequencies of the temporal envelopes of incoming speech, 

because the temporal envelope of normal speech can be compressed in time down to 0.5 of its 

original duration before comprehension is significantly affected (6, 7). Thus, normal brain 

mechanisms responsible for speech perception can adapt to different input rates within this 

range (see refs. 8–10). This online adaptation is crucial for speech perception, because speech 

rates vary between different speakers and change according to the emotional state of the 

speaker.  
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Figure 1  

Compressed speech stimuli. Shown here are two sample sentences used in the experiment. 

Rows 1 and 3 show the spectrogram of the sentences “black cars cannot park” and “black 

dogs cannot bark,” respectively. Rows 2 and 4 show the corresponding temporal envelopes of 

these sentences. Columns correspond to compression ratios of (left to right) 0.2, 0.35, 0.5, 

and 0.75.  
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Figure 2  

An example of MEG signals recorded during the task, and the measures derived from them (S 

MS). (A) Averaged temporal envelopes (magenta) and the first three PCs (PC1–3, blue, red, 

and green, respectively, scaled in proportion to their eigen values) of the averaged responses. 

(B) Power spectra of the stimulus envelope (magenta) and PC1 (blue). (C) Time domain cross 

correlation between the envelope and PC1; black, raw correlation; blue, after band-pass 

filtering at ±1 octave around the stimulus modal frequency.  

Poor readers, many of whom have poor successive-signal auditory (11–17) and visual (18) 

processing, are more vulnerable than good readers to the time compression of sentences (19–

21), although not to speech compression of syllables (22). Comparison of evoked responses 

suggests that the deficiencies of poor readers at tasks requiring the recognition of time-

compressed speech emerge at the cortical level (23). Taken together, these findings suggest 

that the auditory cortex can process speech sentences at various rates, but that the extent of 

the “decodable ranges” of speech modulation rates can substantially vary from one listener to 

another. More specifically, the ranges of poor readers seem to be narrower, and shifted 

downward, than those of good readers.  

Over the past decade, several magnetoencephalographic (MEG) studies have shown that 

magnetic field signals arising from the primary auditory cortex and surrounding cortical areas 

on the superior temporal plane can provide valuable information about the spectral and 

temporal processing of speech stimuli (24–27). The magnetoencephalogram (MEG) is 

currently the most suitable noninvasive technology for accurately measuring the dynamics of 

neural activity within specific cortical areas, especially on the millisecond time scale. It has 

been shown previously that the perceptual identification of ordered nonspeech acoustic 

stimuli is correlated with aspects of auditory MEG signals (28–30). Here, we were interested 

in examining possible neuronal correlates for speech perception. More specifically, we asked 

whether the behavioral dependence of speech comprehension on the speech rate is paralleled 

by a similar behavior of appropriate aspects of neuronal activity located to the general area of 

the primary auditory cortical field. Toward that end, MEG signals arising from the auditory 

cortices were recorded in human subjects (Ss) while they were processing speech sentences at 

four different time compressions. Ss for this study were selected from a population with a 

wide spectrum of reading abilities, to cover a large range of competencies in their effective 

processing of accelerated speech.  
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Methods 

Subjects. 

Thirteen Ss (7 males and 6 females, aged 25–45) volunteered to participate in the experiment. 

Reading abilities spanned the ranges of 81–122 in a word-reading test, and 78–117 in a 

nonword reading test (31). Eleven Ss were native English speakers; two used English as their 

second language. All participants gave their written informed consent for the behavioral and 

MEG parts of the study. Studies were performed with the approval of an institutional 

committee for human research.  

Acoustic Stimuli. 

Before the speech comprehension experiment, 1-kHz tone pips, which were 400 ms in total 

duration with 5-ms rise and fall ramps and presented at 90 dB sound pressure level (SPL) in 

amplitude, were used to optimize the position of the MEG magnetic signal recording array 

over the auditory cortex. For the compressed speech comprehension experiment, a list of 

several sentences uttered at a natural speaking rate was first recorded digitally from a single 

female speaker. Then sentences were compressed to different rates by applying a time-scale 

compression algorithm that kept the spectral and pitch content intact across different 

compression ratios. The time-scale algorithm used was based on a modified form of a phase-

vocoder algorithm (32) and produced artifact-free compression of the speech sentences (Fig. 

1). Onsets were aligned for different sentences and compressions, with data acquisition 

triggered on a pulse-marking sentence onset. Stimulus delivery was controlled by a program 

written in labview (National Instruments, Austin, TX). Sentence stimuli were delivered 

through an Audiomedia card (Digidesign, Palo Alto, CA) at conversation levels of ≈70 dB 

SPL.  

Sentences. 

Three balanced sets of sentences were used. Set 1 included four different sentences. “Two 

plus six equals nine.” “Two plus three equals five.” “Three plus six equals nine.” “Three plus 

three equals five.” Set 2 also included four different sentences. “Two minus two equals 

none.” “Two minus one equals one.” “Two minus two equals one.” “Two minus one equals 

none.” Set 3 included 10 sentences. “Black cars can all park.” “Black cars cannot park.” 

“Black dogs can all bark.” “Black dogs cannot bark.” “Black cars can all bark.” “Black cars 

cannot bark.” “Black dogs can all park.” “Black dogs cannot park.” “Playing cards can all 

park.” “Playing cards cannot park.” Each S was tested with sentences from one set. The 

sentences in each set were selected so that (i) there were an equal number of true and false 

sentences, (ii) there were no single words on which Ss could base their answers, and (iii) the 

temporal envelopes for different sentences were similar. Correlation coefficients between 

single envelopes and the average envelope were (mean ± SD) 0.71 ± 0.14 for set 1, 0.82 ± 

0.04 for set 2, and 0.91 ± 0.07 for set 3.  

Experiment. 



Ss were presented with sentences at compression ratios (compressed sentence 

duration/original sentence duration) of 0.2, 0.35, 0.5, and 0.75. For each sentence, Ss 

responded by pressing one of three buttons corresponding to “true,” “false,” or “don't know”, 

signaling answers by using their left hands. Compression ratios and sentences were balanced 

and randomized. A single psychophysical/imaging experiment typically lasted for about 2 h.  

Recordings. 

Magnetic fields were recorded from the left hemisphere in a magnetically shielded room by 

using a 37-channel biomagnetometer array with superconducting quantum interference 

device (SQUID)-based first-order gradiometer sensors (Magnes II; Biomagnetic Technology, 

San Diego). Fiduciary points were marked on the skin for later coregistration with structural 

MRIs, and the head shape was digitized to constrain subsequent source modeling. The sensor 

array was initially positioned over an estimated location of auditory cortex in the left 

hemisphere so that a dipolar response was evoked by single 400-ms tone pips. Data 

acquisition epochs were 600 ms in total duration with a 100-ms prestimulus period referenced 

to the onset of the tone sequence. Data were acquired at a sampling rate of 1,041 Hz. Then 

the position of the sensor was refined so that a single dipole localization model resulted in a 

correlation and goodness of fit greater than 95% for an averaged evoked magnetic field 

response to 100 tones. After satisfactory sensor positioning over the auditory cortex, Ss were 

presented with sentences at different compression ratios. Data acquisition epochs were 3,000 

ms in total duration with a 1,000-ms prestimulus period. Data were acquired at a sampling 

rate of 297.6 Hz.  

Data Analysis. 

For each S, data were first averaged across all artifact-free trials. Then a singular value 

decomposition was performed on the averaged time-domain data for the channels in the 

sensor array, and the first three principal components (PCs) were calculated. The PCs 

typically accounted for more than 90% of the variance within the sensor array. The eigen 

vectors and values obtained from the averaged data were used for all computations related to 

that S. Then data were divided into categories according to compression ratio and response 

class (“correct,” “incorrect,” and don't know). Trials were averaged, and the first three PCs 

were computed for each class (Fig. 2 A). The following measures were derived from the 2-s 

poststimulus period by computing and averaging measures for each PC weighted by its eigen 

value. (i) rms of the cortical signal. (ii) frequency difference (Fdiff) = modal frequency of the 

evoked cortical signal minus the modal frequency of the stimulus envelope. Modal 

frequencies (i.e., frequencies of maximal power) were computed from the fast Fourier 

transforms (FFTs) of the envelope and signals (see Fig. 2 B). FFTs were computed by using 

windows of 1 s and overlaps of 0.5 s. (iii) Frequency correlation coefficient (Fcc) = the 

correlation coefficient between the FFT of the stimulus envelope and the FFT of the cortical 

signal, in the range of 0–20 Hz. (iv) Phase-locking (PL) = peak to peak amplitude of the 

temporal cross correlation between the stimulus envelope and the cortical signal within the 

range of time lags 0–0.5 s. The cross correlation was first filtered by a band-pass filter at ±1 

octave around the modal frequency of the stimulus envelope (see Fig. 2 C). Dependencies of 

these average measures on the compression ratio and response type were correlated with 

speech comprehension. Comprehension was quantified as C = (n correct − n incorrect)/n 

trials. C could have values between −1 (all incorrect) and 1 (all correct), where 0 was the 

chance level.  



Multiple Dipole Localization. 

Multiple dipole localization analyses of spatiotemporal evoked magnetic fields were 

performed by using an algorithm called multiple signal classification (MUSIC; ref. 33). 

MUSIC methods are based on estimation of a signal “subspace” from entire spatiotemporal 

MEG data by using singular-value decomposition (SVD). A version of the MUSIC algorithm, 

referred to as “the conventional MUSIC algorithm,” was implemented in matlab (Math 

Works, Natick, MA) under the assumption that the sources contributing to the MEG data 

arose from multiple stationary dipoles (<37 in number) located within a spherical volume of 

uniform conductivity (34). The locations of dipoles are typically determined by conducting a 

search over a three-dimensional (3D) grid of interest within the head. Given the sensor 

positions and the coordinates of the origin of a “local sphere” approximation of the head 

shape for each S, a Lead-field matrix was computed for each point in this 3D grid. From 

these Lead-field matrices and the covariance matrices of spatiotemporal MEG data, the value 

of a MUSIC localizer function could be computed (equation 4 in ref. 34). Minima of this 

localizer function correspond to the location of dipolar sources. For each S, at each point in a 

3D grid (−4 < x < 6, 0 < y < 8, 3 < z < 11) in the left hemisphere, the localizer function was 

computed over a period after sentence onset by using the averaged evoked auditory magnetic 

field responses.  
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Results 

At the beginning of each recording session, sensor array location was adjusted to yield an 

optimal MEG signal across the 37 channels (see Methods). To confirm that the location of the 

source dipole(s) was within the auditory cortex, the MUSIC algorithm was run on recorded 

responses to test sentences. For all Ss, it yielded a single dipole source. The exact location of 

the peaks of these localizer functions varied across Ss according to their head geometries and 

the locations of their lateral fissure and superior temporal sulci. However, for all Ss, the 

locations of minima were within 2–3 mm of the average coordinates of the primary auditory 

cortical field on Heschl's gyrus (0.5, 5.1, 5.0 cm; refs. 35 and 36). When these single dipoles 

were superimposed on three-dimensional structural MRIs, they were invariably found to be 

located on the supratemporal plane, approximately on Heschl's gyrus.  

The low signal to noise ratio of MEG recordings requires data averaged across multiple 

repetitions of the same stimuli. This requirement imposed a practical limit on the number of 

sentences that could be used. To reduce a possible dependency of results on a specific 

stimulus set, we used three contextually different sets of sentences. Sentences in each set 

were designed to yield similar temporal envelopes so that trials of different sentences with the 

same compression ratios could be averaged to improve signal to noise ratio. PC analyses 

conducted on such averaged data were used to reduce the dimensionality of the MEG sensor 

array from 37 to 3 while preserving most of the information contained in the MEG signals 

(Fig. 2 A; see Methods).  

To examine the extent of frequency-matching between the temporal envelope of the stimulus 

and that of recorded MEG signals, power spectra of the stimulus envelope and the three PCs 

were computed (Fig. 2 B; only PC1 is shown). The modal frequency of evoked cortical 

signals was fairly close to that of the stimulus for compression ratios of 0.75 and 0.5 (also 



compare the time-domain signals, Fig. 2 A). However, for stronger compressions, the 

frequency of the cortical signals could not follow the speech signal modulation, and the 

difference between the modal frequencies of the stimulus and the cortical signals 

progressively increased. The difference between modal frequencies of the stimulus vs. 

auditory cortex responses (“Fdiff”; see Methods) was correlated with sentence 

comprehension (“C”; see Methods). For S MS shown in Figs. 2 and 3 A for example, Fdiff 

(green curve) and comprehension (black curve) were strongly correlated (P = 0.002, linear 

regression analysis), as is demonstrated by the overlap of the normalized curves. In fact, Fdiff 

and C were significantly correlated (P < 0.05) in 10 of 13 Ss (see another example in Fig. 3 

B). On the average, Fdiff could predict 88% of the comprehension variability for individual 

Ss (Table 1 and Fig. 3 C).  
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Figure 3  

Neuronal correlates for speech comprehension. A–C measures were averaged across PC1–3 

(see Methods) and normalized to the maximal value of the comprehension curve; neuronal 

correlates with negative values were first “shifted” up by adding a constant so that their 

minimal value became 0. (A and B) Comprehension (black thick curve) and neuronal 

correlates (magenta, rms; green, Fdiff; blue, PL) for the S depicted in Fig. 2 (MS) and for 

another S (JW). (C) Average comprehension and neuronal correlates across all Ss (mean ± 

SEM, n = 13). (D) Scatter plot of thresholds for comprehension and Fdiff for all Ss. For each 

variable and each S, threshold was the (interpolated) compression ratio corresponding to 0.75 

of the range spanned by that variable. The red line is a linear regression.  
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Table 1  

Potential MEG correlates for speech comprehension 



Another related measure, the correlation coefficient between the two power spectra (Fcc), 

could predict about 76% of the variability in sentence comprehension. For comparison, the 

average power of the MEG signals, measured by the rms of response amplitudes (Table 1 and 

Fig. 3, magenta curves), could not predict any significant part of this variability.  

The main predictive power of the stimulus-cortex frequency-matching came from the fact 

that cortical-evoked modulations, whose frequencies were usually close to the frequency of 

the envelope at normal speech rates (<10 Hz), remained at the same or lower frequency when 

the stimulus frequency increased with compression. Thus, with compression, both Fdiff and 

comprehension were reduced. Although this behavior was consistent across Ss, the actual 

frequency range that allowed for good comprehension varied among Ss. Interestingly, so did 

their Fdiffs. The covariation across Ss between Fdiff and C is demonstrated in Fig. 3 D, in 

which each symbol represents the threshold values (compression ratio yielding 0.75 of 

maximal value) of the two variables for an individual S. The linear regression (slope = 0.6, r 

= 0.72, P = 0.005) indicates that Fdiff can explain 52% of the variability in C across Ss.  

The relevance of PL to speech comprehension was examined by determining the cross 

correlation between the two time-domain signals, i.e., the temporal envelope of the speech 

input and the temporal envelope of the recorded cortical response (Fig. 2 A). The strength of 

PL was quantified as the peak to peak amplitude of the cross correlation function, filtered at 

±1 octave around the stimulus modal frequency, within the range 0–0.5 s (Fig. 2 C). This 

measure (PL), which represented the stimulus-cortex time locking at the stimulus frequency 

band, was also strongly correlated with comprehension (Table 1 and Fig. 3, blue curves). 

Moreover, the correlation coefficient between C and PL was not statistically different from 

that between C and Fdiff (P > 0.1, two-tailed t test).  

The low signal to noise ratio of MEG signals did not permit a trial by trial analysis in this 

study. However, some trial-specific information could be obtained by comparing correct 

trials vs. incorrect and don't know trials. This comparison revealed that PL was significantly 

higher during correct than during incorrect trials (2-way ANOVA, P = 0.0005) or don't know 

trials (P = 0.0001; Fig. 4), whereas Fdiff was not (2-way ANOVA, P > 0.1). The Fcc showed 

more significant differences than Fdiff, but less significant than PL, between correct, 

incorrect, and don't know trials (Fig. 4 D, 2-way ANOVA, P = 0.07 and 0.01, respectively).  
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Figure 4  

Correlates as a function of trial success. Each of the correlates was averaged separately over 

correct (blue), incorrect (red), and don't know (black) trials across all Ss. Mean ± SEM are 

depicted. Values (rms) are scaled by using arbitrary scaling.  
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Discussion 

Comprehension of time-compressed (TC) speech was determined by using a variety of 

speech compression methods (6, 7). These studies have shown that comprehension in normal 

Ss begins to degrade around a compression of 0.5. However, most previous methods of 

speech compression did not use compression stronger than 0.4 or 0.3. Here, we used a 

technique for speech compression that used a time-scale compression algorithm, which 

preserved spectral and pitch content across different compression ratios. We were thereby 

able to compress speech down to 0.1 of its original duration with only negligible distortions 

of spectral content. This technique allowed us to derive complete psychometric curves, 

because compressions to 0.2 or less almost always resulted in chance-level performance. In 

this study, only four compression ratios were used to allow for the averaging of the MEG 

signals over a sufficient number of trials. Compression ratios were selected so that they 

spanned the entire range of performance (compressions between 0.2 and 0.75) across all Ss. 

The psychophysical results obtained were consistent with those obtained in previous TC 

speech-stimulus studies. However, an additional insight was obtained regarding the neuronal 

basis of the failures of comprehension for strongly compressed speech.  

The main finding was that frequency-matching and PL between the speech envelope and the 

MEG signal recorded from the auditory cortex were strongly correlated with speech 

comprehension. This finding was consistent across a group of Ss that exhibited a wide range 

of reading- and speech-processing abilities. Thus, regardless of the overall performance level, 

when the comprehension of a given S was degraded because of time compression, so too 

were the frequency-matching and PL between recorded auditory cortex responses and the 

temporal envelopes of applied speech stimuli (see Fig. 3). Although both measures gave a 

good prediction for average comprehension, only stimulus-cortex PL was significantly lower 

during erroneous trials compared with correct trials. This difference suggests that the capacity 

for frequency-matching, attributed to the achievable modulation response properties of 

auditory neurons, is an a priori requirement, whereas PL is an “online” requirement for 

speech comprehension.  

A recent study has shown that with sufficiently long stimulus trains, thalamic and cortical 

circuits can adjust their response frequencies to match different modulation rates of external 

stimuli (37). However, with short sentences such as those presented here, presumably there 

was not sufficient time for the brain to change its response frequency according to the 

stimulus frequency, and it was therefore crucial that the input frequency fall within the 

effective operational range of a priori modulation characteristics of primary auditory cortex 

neurons. Stimulus-response PL is usually initiated by the first syllable that follows a silent 

period. Subsequently, if the speech rate closely matches the cortical a priori temporal tuning, 

PL will be high because stimulus and cortical frequencies will correspond. However, if the 

speech rate is faster than the a priori cortical tuning, PL will be degraded or lost (see Fig. 2).  



This interpretation is consistent with the successive-signal response characteristics of 

auditory cortical neurons (e.g., refs. 38 and 39). Interestingly, the strongest response locking 

to a periodic input is usually achieved for stimulus rates (frequencies) within the dominant 

range of spontaneous and evoked cortical oscillations, i.e., for frequencies below 14 Hz (40, 

41). This is also the frequency range that usually characterizes species-specific calls (42–44). 

In fact, response locking is strongest for neurons whose best spectral frequency is within the 

spectrum of the self calls (ref. 42 and S.N., unpublished data). Our results suggest that 

cortical response locking to the temporal structure of the speech envelope is a prerequisite for 

speech comprehension. This stimulus-response PL may enable an internal segmentation of 

different word and sentence components (mostly syllables; see Fig. 1). It is hypothesized that 

precise PL reflects the segmentation of the sentence into time chunks representing successive 

syllables, and that in that segmented form spectral analysis is more efficient (45). As 

mentioned earlier, speech-perception mechanisms have to deal with varying speech rates. 

Furthermore, different listeners operate successfully within very different ranges of speech 

rates (Fig. 3 D). Our results suggest that for each S, the decodable range is the range of 

speech rates at which stimulus-cortex temporal locking can be achieved (Figs. 3 and 4).  

The neural mechanisms underlying PL and its utilization for speech perception are still not 

understood. The frequency range of speech envelopes is believed to be too low for the 

operation of temporal mechanisms based on delay lines (46). However, mechanisms based on 

synaptic or local circuit dynamics (47) or those based on neuronal periodicity (phase-locked 

loops; ref. 48) could be appropriate. The advantage of the former mechanisms is that they do 

not require specialized neuronal elements such as oscillators. The advantage of the latter 

mechanism is its online adaptivity, which allows tracking of continuous changes in the rate of 

speech. Recent evidence from the somatosensory system of the rat supports the 

implementation of phase-locked loops within thalamocortical loops (37, 49–51). Because the 

computational tasks, and frequency ranges, are similar, similar mechanisms could be useful 

for both somatosensory and auditory (and maybe even visual; see ref. 52) processing of 

temporally encoded information.  
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Conclusions 

We show here that the poor comprehension of accelerated speech is paralleled by a limited 

capacity of auditory cortical responses to follow the frequency and phase of the temporal 

envelope of the speech signal. These results suggest that the frequency tuning of cortical 

neurons determines the upper limit of speech modulation rate that can be followed by an 

individual, and that a comprehension of a sentence requires an online phase-locking to the 

temporal envelope of that sentence. Our results, together with recent indications that temporal 

following is plastic in the adult (53, 54), suggest that training may enhance cortical temporal 

locking capacities, and consequently, may enhance speech comprehension under otherwise 

challenging listening conditions.  
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